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Berry–Robnik level statistics in a smooth billiard system
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Abstract. The Berry–Robnik level spacing distribution is demonstrated clearly in a generic
quantized plane billiard for the first time. However, this ultimate semiclassical distribution is
found to only be valid for extremely small semiclassical parameters (effective Planck’s constant)
where the assumption of statistical independence of regular and irregular levels is achieved. For
sufficiently larger semiclassical parameters we find (fractional power-law) level repulsion with
a phenomenological Brody distribution providing an adequate global fit.

Energy level statistics of mixed quantum systems whose classical dynamics is partly regular
and partly chaotic have been intensively studied over the past decade (see [1] and references
therein), and this subject is still much less theoretically understood than the level statistics of
the two extreme cases, namely completely chaotic (hyperbolic) systems [2, 3], and integrable
systems [4]. However, it is believed that mixed systems, for example the hydrogen atom in
strong magnetic field [5], are generic in nature, at least among dynamical systems with few
degrees of freedom. Although Berry and Robnik (BR) have developed a semiclassical theory
of level spacing statistics for mixed systems in 1984 [6], there has been much confusion
in the literature advocating various phenomenological models due to incompatibility of
experimental or numerical data with the BR statistics (see a recent comment [7]). The
BR distribution is built on a simple and clean assumption of astatistically independent
superposition of partial subspectra consisting ofregular or chaotic levels (following an
old Percivals’ idea [8] of classifying the quantum eigenstates of mixed systems asregular
or chaotic). The sequence of regular levels, associated to eigenstates whose phase-space
distribution functions (e.g. Wigner or Husimi) localize on regions of regular motion, is
assumed to have Poissonian statistics, whereas the sequences of chaotic levels, associated
with eigenstates whose phase-space distribution functions extend over chaotic components
of classical phase space, are assumed to have GOE (or GUE if anti-unitary symmetry is
absent) statistics of ensembles of Gaussian random matrices. Further, it is crucial to note
that thegap distributionE(S), the probability that unfolded energy interval of lengthS
contains no levels, factorizes upon independent superposition of level sequences, so the
two-component BR distribution for a system with a single classically chaotic component of
relative measureρ2 and regular components of complementary measureρ1 = 1− ρ2 reads

EBR(S) = EPoisson(ρ1S)EGOE(ρ2S). (1)

Note thatEPoisson(S) = exp(−S) while for EGOE(S) no closed-form expression exists
(for the exact infinitely dimensional GOE), and we have to rely on various expansions
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(we recommend the Padé approximation published in [9]). The more common nearest-
neighbour level spacing distributionP(S) is directly related to the gap distribution, simply
asPBR(S) = d2EBR(S)/dS2.

However, for the validity of the semiclassical BR formula, two conditions have to be
satisfied. (i) The regular and irregular levels should not be correlated, i.e. the corresponding
(Wigner or Husimi) phase-space distributions should not overlap. This is true if the quantum
resolution scale in phase space,1qp ∼ h̄1/2 (whereh̄ is the effective Planck’s constant),
is small enough to resolve the essential features of the structure of classical phase space:
h̄1/2 < (sizes of the main regular islands, widths of chaotic strips penetrating through
regular islands, etc). (ii) The quantum relaxation time, i.e. the Heisenberg (break) time
tbreak= 2πh̄/1E (where1E is the mean level spacing) should be larger than the classical
ergodic timeterg on the chaotic component,tbreak> terg. When this is not true, one expects
dynamical localization of eigenstates inside the chaotic component [1, 10–12].

Note that the BR statistics are incompatible with level repulsion, namelyPBR(0) = 1−
ρ2

2 6= 0. If either (i) or (ii) is violated, one recovers level repulsionP(S → 0)→ 0. Indeed,
numerous numerical studies ([1, 7, 13] and references therein) give phenomenological
support to thefractional power-law level repulsionwhich is usually very well globally
captured by the phenomenological Brody distribution [14]

PB(S) = (β + 1)bSβ exp(−bSβ+1) b = [0(1+ (β + 1)−1)]β+1. (2)

In fact, even for a generic two-dimensional toy system with a simple phase-space structure
(where (i) and (ii) have the largest chances to apply) having a small number of islands and
well-connected chaotic component, one may verify that (i) and (ii) are typically fulfilled
only for sequential quantum numbers larger than∼106–107 [10].

So it is not surprising that the ‘ultimate semiclassical’ BR statistics have so far
been clearly demonstrated only in two toy systems: (1) in a rather abstract compactified
standard map [15], and (2) in a two-dimensional semiseparable oscillator [13, 10], which is
dynamically a generic system but geometrically somewhat special. Here we give the first
clear numerical demonstration of BR statistics in a generic billiard system with a smooth
boundary. We consider the classical and quantum motion of a free particle moving inside
a bounded planar region which has the shape of a smoothly deformed circle. The billiard
domain is described by the following functionr(φ), giving the radial distance from the
origin to the boundary as a function of the polar angleφ,

r(φ) = 1+ a cos(4φ). (3)

For the purpose of this paper we choose the following value of deformation parameter,
a = 0.04, for which the classical phase space (plotted in a Poincaré–Birkhoff coordinates
on a boundary-section in figure 1) has regular regions with the total relative Liouville
measure (not the area on SOS [16])ρcl

1 = 0.115± 0.005. Note that numerical computation
of measures of regular and chaotic components of phase space in mixed (KAM) systems
converges very slowly with increasing discretization of the phase space [17], hence it is
difficult to further reduce the error estimateδρcl

1 ≈ 0.005. This value of deformation
parametera = 0.04 seems to be the most appropriate; for larger values ofa almost entire
phase space is fully chaotic (ρ1 < 0.01 for a > 0.07), while for smaller values ofa the
structure of phase space becomes much more complicated (more complex geometry, stronger
cantori barriers, etc) pushing the conditions (i), (ii) for the validity of the semiclassical BR
statistics towards even smaller values of the semiclassical parameter ¯h.

High-lying quantum eigenenergies, eigenvalues of the Schrödinger equation(∇2 +
k2)9k(r) = 0 with Dirichlet boundary conditions on the boundaryr = r(φ), have been
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Figure 1. Classical phase space fora = 0.04 in Poincaŕe–Birkhoff coordinates: arc-lengths
and tangential (normalized) velocityv. We show a chaotic orbit with 2000 000 collisions with
the boundary.

computed by means of extremely efficient scaling technique proposed by Vergini and
Saraceno [18]. Eigenstates9k are expanded in a basis ofcircular scaling functions(see
also [12], as opposed to plane waves used in the original approach [18])

9k(r) =
M∑
l=1

alJ4l(kr) sin(4lφ). (4)

Note that the billiard has been desymmetrized and here we consider only fully antisymmetric
states with respect to the eight-fold symmetry group of the billiard. The coefficientsal are
determined by minimizing a special positive quadratic form defined along the boundary of
the billiard [18]. The dimension of the problemM = [(1+ a)k/4] +Mevanescentis nearly
optimal where a few tens, typicallyMevanescent∼ 40, evanescent modes have been added in
order to ensure the convergence and accuracy of the computed energy levels. We should note
that the scaling method of the quantization of billiards is by far superior to other relevant
methods, e.g. the boundary integral method [19] or Heller’s plane wave decomposition [20],
since it yields a constant fraction (5–10%) ofM ∝ k of accurate levels, with no risk of
missing any, by solving a single generalized eigenvalue problem of dimensionM.

In figure 2 we show cumulative nearest-neighbour level spacing distributionsW(S) =
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Figure 2. Cumulative nearest level spacing distributionW(S) for a stretch of 5168 consecutive
levels in the far semiclassical regime (k ≈ 16 000) (heavy curve) and a stretch of 6220
consecutive levels in the near semiclassical regime (k ≈ 500) (light curve). The first numerical
curve is almost overlapping with theoretical best fitting BR distribution forρ

q
1 = 0.119 (broken

curve), while the second numerical curve agrees very well with the best fitting Brody distribution
with exponentβ = 0.46 (chain curve). For comparison we give Poisson and GOE integrated
level spacing distributions (dotted curves). In the inset we plot the same data in theT -function
representation [21],T (S) = ln(− ln(1 − W(S))) against lnS, which transforms the Brody
distributions (an hence also Poissonian and Wigner) to straight lines, and enhances the region
of small spacings.

∫ S
0 ds P (s) = (d/dS)E(S) − (d/dS)E(0) for the unfolded [9] spectral stretches{en =
k2
n/32 + ( 1

8 + 1/π)kn; kmin 6 kn 6 kmax} (for small a) each containing about 6000
consecutive levels. In fact, we have computed several spectral stretches, the first in the
near-semiclassical regime399.7 6 k 6 600.1 (containing 6220 levels), and the last in
the far-semiclassical regime15 999.7076 k 6 16 004.865 (containing 5168 levels) where
the sequential quantum numberis N ≈ k2/32+ ( 1

8 + 1/π)k ≈ 0.8× 107. Only for the
last spectral stretch in the far semiclassical regime (k ≈ 16 000) did we find statistically
significant agreement with BR distribution (figures 2 and 3) where the quantal (best-fitting)
parameterρq

1 agrees very well with its classical value, namelyρq
1 = 0.119. However, for

smaller sequential quantum numbers, when we approach the near-semiclassical regime, we
find substantial deviation from BR statistics and recoverfractional-power law level repulsion
[21, 1], namely for the lowest spectral stretch (figures 2 and 3) atk ≈ 500 we find almost



Berry–Robnik level statistics in a smooth billiard system 7027

Figure 3. Fine detail deviations from the BR distribution (forρ1 = 0.119) in a uniform
U -function transformation [21]: we plotU(W(S)) − U(WBR(S)) againstW(S). In the far
semiclassical regimek ≈ 16 000 (5168 consecutive levels), the difference ofU -functions (heavy
curve) lies within a band of expected statistical errorδU (broken lines), while in the near
semiclassical regimek ≈ 500 (6220 consecutive levels), the difference ofU -functions (light
curve) agrees very well with the difference ofU -functions for the best fitting Brody distribution
with exponentβ = 0.46 (chain curve).

statistically significant agreement with Brody distribution (2) with exponentβ = 0.46. Of
course, the fit to BR distribution in the near semiclassical regimek ≈ 500 and the fit
to Brody distribution in the far semiclassical regimek ≈ 16 000 turned out to be highly
statisticallynon-significant.

In figure 3 we show deviations of numerical spacing distributions from the semiclassical
BR distribution (for parameterρq

1 = 0.119 ≈ ρcl
1 ) in fine detail, using a smoothU -

transformation [21] of the cumulative level spacing distributionU(W(S)) − U(WBR(S)),
whereU(W) = (2/π) arccos

√
1−W , againstW(S). This statistical representation has a

uniform expected statistical errorδU(W) = 1/(π
√
1N) (where1N is the number of levels

in a spectral stretch) and a constant density of numerical points along the abscissa. One can
see very clearly that in both cases, far and near semiclassical, the numerical distributions
are fluctuating around theoretical BR and Brody distributions, respectively, within expected
statistical error.

Finally we also wish to characterize long-range spectral correlations, so we consider
the number variance62(L) = 〈N2〉L − 〈N〉2L, i.e. the variance of the number of unfolded
levels en in an interval of lengthL. Since this is a linear statistic it should be additive
upon statistically independent superposition of spectral subsequences [22]. According to
assumptions (i) and (ii) one immediately arrives at the ultimate semiclassical formula for
the number variance [22]

62(L) = 62
Poisson(ρ1L)+62

GOE(ρ2L) (5)

where 62
Poisson(L) = L is the number variance of Poissonian level sequences, and
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Figure 4. Number variance62(L) for the four spectral stretches: fork ≈ 16 000 (heaviest curve,
5168 levels),k ≈ 8000 (next heaviest curve, 17 300 levels),k ≈ 2000 (second lightest curve,
5100 levels), andk ≈ 500 (lightest curve, 6220 levels). The broken curve is the semiclassical
formula (5) which indeed reproduces the far semiclassical numerical data (heaviest full curve)
quite well, forL 6 L∗ ≈ 50. For comparison we give the Poissonian and GOE curves (dotted).

62
GOE(L) ≈ (2/π2) ln(2πL) is the number variance of the spectrum of infinitely dimensional

GOE random matrix which is supposed to model chaotic levels. In figure 4 we show62(L)

for four spectral stretches, namely fork ≈ 500, k ≈ 2000,k ≈ 8000, andk ≈ 16 000, and
only the last in the far semiclassical regime agrees well with formula (5) (for parameter
ρ1 = ρcl

1 = 0.115) up toL = L∗ ≈ 50.
In this paper we have clearly demonstrated the validity of BR level spacing distributions

in a generic smooth plane billiard system with mixed classical phase space, namely the
quartic billiard. However, for insufficiently small semiclassical parameter ¯h ∼ N−1/2,
we demonstrated the existence of fractional-power law level repulsion which is (for
sufficiently small energy ranges) globally very well captured by the phenomenological
Brody distribution. Unfortunately, this is the regime which can only be observed in most
experimental situations due to the extremely high-energy region of crossover to BR statistics.



Berry–Robnik level statistics in a smooth billiard system 7029

We should note that this particular KAM billiard system ((3) fora = 0.04) has quite a
simple phase-space structure which is reflected in relatively low transition point (N ≈ 107)
to the ultimate semiclassical BR statistics. For example, in a well known quadratic or
Robnik billiard, the phase space is much more complicated [23] (smaller regular islands,
more partial phase-space barriers, cantori), and as a consequence, the transition to the BR
regime is shifted to much higher energies [24].
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